
IraHive HA Framework Application Notes 1

IraHive HA Framework

IraHive is an interprocess messaging framework with redundancy and load 
balancing features. Architects and Programmers always wish for a seamless way 
to communicate between programs, without resorting to complicated APIs.

The wish list also contains automatic service discovery, message priority, RSA 
encryption, high availability, selective buffering if the destination is not ready, or 
sent by simple name or role, and sent to one destination or many or all. IraHive 
was designed to cater to all those needs using very simple and lightweight APIs. 
IraHive is simply referred to as Hive most of the time.

The term Hive refers to how a bee hive operates.

The IraHive framework also contains a transient real-time embedded database 
named Orb. The data stored in Orb resides within the application’s heap 
memory, so it eliminates even network latency while making SQL queries. The 
database tables are automatically synced across applications subscribed to the 
tables and the built-in trigger support means that each application can set 
trigger functions for insert/ update/delete on interested tables. It is called a 
transient database, because it is primarily used for fast changing data which 
needs to be kept synchronized across multiple applications. Think of it as an 
universal global variable or distributed global variable, which can be managed 
as a SQL table, with indexing and trigger support.



IraHive HA Framework Application Notes 2

1 Standalone Hive

Standalone Hive
Server 1

Server 2 Server 3

IraPass

Client 

App

Hive 

Service

Client 

App

Client 

App

Client 

App

Client 

App

Client 

App

Client 

App

Client 

App

Client 

App

A hive should have one or more Hive service instances. If the hive has only one 
Hive service instance, then all the hive clients will be connected to that single 
Hive service in a star configuration. This basic hive setup won’t have any 
redundancy if Hive service is down.

When a Hive service starts, it starts advertising its presence on a known multi-
cast address or via redis DB accessible to all clients. The client applications that 
wish to join a common hive will listen on the same multi-cast address or read 
from redis DB for Hive services that are running. Once a Hive service makes its 
presence known, IraPass (floating license manager) will be the first client to join 
the hive and issues core licenses to the hive. After the licenses are issued, the 
rest of the clients applications can connect to Hive service and become part of 
the hive. It usually takes 5-10 seconds for all the client applications to join the 
hive. It is possible to have multiple hives in the same machine or subnet using 
different multi-cast addresses or hive names.



IraHive HA Framework Application Notes 3

After joining the hive, the applications can send messages to each other just 
using a name as the destination address. The name could be the id or the role of 
the application that was used while joining the hive. The message can be sent to 
following category of destinations:

BY_ADDRESS: A Hive client creates a client address when it joins the hive, 
generally it will be <ServiceName>_<MachineName>, if the service can only have 
one instance per machine. If the client can have multiple instances per machine, 
it will also contain process ID. To send a message by address, the sender must 
know this address. This is generally used for stateful transactions, while replying 
asynchronously to a request sender.

BY_ID_ONE: If a request can be serviced/handled by any instance of an 
application, this is the preferred method. The Hive service will load balance all 
the instances of the destination application and send the message to one of the 
instances. If a reply is required, it always uses by_address method to reply back 
to the requester.

BY_ID_ALL: This method is generally used for informational purposes or to 
synchronize/replicate data across multiple instances of an application.

BY_ROLE_ONE: A given application can have multiple roles. If a request can be 
serviced/handled by any instance of applications that share a common role, this 
is the preferred method. The Hive service will load balance all the instances of 
the destination applications with that role and send the message to one of the 
instances. If a reply is required, it always uses by_address method to reply back 
to the requester.

BY_ROLE_ALL: This method is generally used for informational purposes or to 
synchronize/replicate data across multiple instances of applications with a 
given role.

BROADCAST: This method is used if a message needs to be sent to all the clients 
that are in hive. This is very rarely used.



IraHive HA Framework Application Notes 4

1.2 Performance Considerations

Hive was designed to be extremely fast with minimum overhead. Some of the 
salient features are as follows:

• All the socket connections between Hive service and the clients are 
continuously kept open. So there is no delay in opening or closing sockets for 
sending each message.

• Hive messaging uses every CPU core available via multi threading to 
maximize performance.

• Critical messages like control messages have the highest priority. 
Applications can set priority to override the default one.

• Messages can be selectively marked for guaranteed delivery.

1.1 Control Messages

Every client receives certain control messages which they can use for various 
purposes.

• Roster: This is the first message received by the client upon joining the hive. This 
message contains the presence information of every client that is already in 
the hive. The presence info contains the id, role, address and start-time of the 
client.

• Join: This message is received by every hive member when a new client joins 
the hive. The message contains the presence info of the new hive member.

• Leave: This message is received by every hive member when a client leaves the hive.



IraHive HA Framework Application Notes 5

Highly Available Hive
Server 1

Server 2 Server 3

IraPass

Client 

App

Hive 

Service

Client 

App

Client 

App

Client 

App

Client 

App

IraPass

Client 

App

IraPass

Client 

AppHive 

Service

Hive 

Service

2 Highly Available (HA) Hive

Hive was designed to be extremely fast with minimum overhead. Some of the 
salient features are as follows:

• All the socket connections between Hive service and the clients are 
continuously kept open. So there is no delay in opening or closing sockets for 
sending each message.

• Hive messaging uses every CPU core available via multi threading to 
maximize performance.

• Critical messages like control messages have the highest priority. 
Applications can set priority to override the default one.

• Messages can be selectively marked for guaranteed delivery.



IraHive HA Framework Application Notes 6

When a Hive instance is started, it also looks for older instances of Hive service. If 
an older instance is found, it will connect to the oldest Hive service instance 
(primary) as a client, and stays around as a backup. If the oldest Hive in the hive 
goes down, all the clients will connect to the next oldest Hive service and re-
create the hive. The images in the previous page show the transition that occurs 
in a highly available hive. When the original primary Hive service comes back, it 
will connect to the new primary Hive instance as a backup instance.

Sometimes a machine can lose network connectivity, leading to a split hive. Until 
the network connection is restored, there will be a split hive, which allows the 
applications to retain connectivity at least within the disconnected machine. 
When the network connection is restored, the two parts of the split hives join 
together to become a single hive like before.

Highly Available Hive Server 1

Server 2 Server 3

IraPass

Client 

App

Hive 

Service

Client 

App

Client 

App

Client 

App Client 

App

IraPass

Client 

App

IraPass

Client 

App

Hive 

Service Hive 

Service

After primary 
hive service 

restarted



IraHive HA Framework Application Notes 7

3 Transient embedded real-time distributed database

Orb is an embedded serverless real-time distributed database with redundancy 
load balancing features. Architects and Programmers always wish for a 
seamless way to share transient data (quick changing) across machines and 
programs, without compromising on performance or simplicity. This becomes 
very important when transient state information of various types must be highly 
synchronized across multiple instances of the same or different applications. 
This cannot be used for persistent storage.

For example, in an enterprise telephony system, the state of an agent at any 
instant should be available to the Softphone, Dialer, Dashboard, CallQueue, etc. 
This is an example of different applications needing perfectly synced access to 
the same transient data. Similarly, all transient data of multiple instances of 
CallQueue require perfect synchronization to achieve redundancy and load 
balancing.

Traditionally, this kind of synchronization is achieved by storing the transient 
data in a centralized location in an in-memory database. This would usually 
create a single point of failure, and require far more complex design to achieve 
redundancy and load balancing. Not to forget, the network latency and the delay 
caused by mutually exclusive locking of the data would make pull-type 
synchronization quite in-efficient. Here the applications that modify transient 

data are responsible for updating the central location. And the applications 

that need the latest copy of transient data must pull it from the central 

location.

To solve this problem, a different approach was considered using the Hive 
Framework. An application can create a named database table within the 
process, and add itself and other applications as subscribers. This is essentially 
located in the heap memory of the process. However, once the table is created, 
the Hive messaging architecture will replicate this table creation asynchronously 
to every instance of all the applications in the hive that are subscribed to that 
table. When the table is modified (insert/update/delete), the changes will also 
be replicated asynchronously to every instance of all the applications in the hive 
that are subscribed to that table. These replications are handled by the Orb 
layer, and are invisible to the process. Here the applications that modify 

transient data are responsible for updating only local data within the process. 
The applications that need the latest copy of transient data will always find it 

within the process.



IraHive HA Framework Application Notes 8

Contrast this with the scenario in the previous paragraph. Since the processes 
always work with the copy they already have within, the performance 
improvement is phenomenal.

3.1 Orb Replication Concept

This section will detail some of the use cases of replication, to give a better idea 
about the concept. Whenever a new table is created within a process, replication 
instruction is sent to all the subscribers of the table, so that same table is 
created at every subscriber process.

3.1.1 What happens when a process instance is started?

Let’s assume one instance of process B and C are already running, with one table 
each that they have already created. 

Process C

Agent State (Subscribers: A, C)

tenant_id agent_id status

acme 10001 offline

acme 10002 ready

omni 20001 ready

sonus 20002 offline

Process B

Trunk Map (Subscribers: A, B)

gateway ip_address channels

sangoma 172.16.20.20 60

cisco 172.16.20.21 90

sangoma 172.16.20.22 90

sonus 172.16.20.23 150

Full table

Hive

Process A

Full table



IraHive HA Framework Application Notes 9

Now a new instance of A is started. Process A is a subscriber of both the tables. 
When process A joins the hive, both process B and C receive a join message with 
the address of process A. Since A is a subscriber of a table in B, the oldest 
instance of process B will send the entire copy of table to process A. Similarly, 
since A is a subscriber of a table in C, the oldest instance of process C will send 
the entire copy of table to process A. The subscription list maintained by the 
creator of the table. Same logic will apply to any number of subscriptions that 
the newly launched instance will have. If the hive already has a process that 
created the table, the oldest instance of the process will send the full copy of the 
tables to the newly arrived subscriber process.

3.1.2 How changes to transient data gets replicated?

The below image shows an example of 3 applications sharing 2 tables between 
them.

Process B

Trunk Map (Subscribers: A, B)

gateway ip_address channels

sangoma 172.16.20.20 60

cisco 172.16.20.21 120

sangoma 172.16.20.22 90

sonus 172.16.20.23 150

Agent State (Subscribers: A, C)

tenant_id agent_id status

acme 10001 ready

acme 10002 ready

omni 20001 ready

omni 20002 offline

Process A

Trunk Map (Subscribers: A, B)

gateway ip_address channels

sangoma 172.16.20.20 60

cisco 172.16.20.21 90

sangoma 172.16.20.22 90

sonus 172.16.20.23 150

Agent State (Subscribers: A, C)

tenant_id agent_id status

acme 10001 offline

acme 10002 ready

omni 20001 ready

omni 20002 offline

Process A

Trunk Map (Subscribers: A, B)

gateway ip_address channels

sangoma 172.16.20.20 60

cisco 172.16.20.21 90

sangoma 172.16.20.22 90

sonus 172.16.20.23 150

Agent State (Subscribers: A, C)

tenant_id agent_id status

acme 10001 offline

acme 10002 ready

omni 20001 ready

omni 20002 offline

Process C

Process B

Trunk Map (Subscribers: A, B)

gateway ip_address channels

sangoma 172.16.20.20 60

cisco 172.16.20.21 90

sangoma 172.16.20.22 90

sonus 172.16.20.23 150

Process B

Trunk Map (Subscribers: A, B)

gateway ip_address channels

sangoma 172.16.20.20 60

cisco 172.16.20.21 90

sangoma 172.16.20.22 90

sonus 172.16.20.23 150

Process C

Agent State (Subscribers: A, B)

tenant_id agent_id status

acme 10001 offline

acme 10002 ready

omni 20001 ready

sonus 20002 offline

Hive



IraHive HA Framework Application Notes 10

• Table “Agent State” is subscribed by process A and process C. Has 4 copies in 
the hive.

• Table “Trunk Map” is subscribed by process A and process B. Has 5 copies in 
the hive.

• There are 2 instances of Process A in the hive. Each has a copy of both tables.

• There are 3 instances of Process B in the hive. Each has a copy of “Trunk Map” 
table.

• There are 2 instances of Process C in the hive. Each has a copy of “Agent 
State” table.

When a change is made to a row in “Agent State” table in Process A, the Orb 
layer will send a single replication message to the Hive service, targeted at all 
the instances of A and C processes. The Hive service will find all the qualifying 
instances and send the messages. This results in 3 other copies of the table 
getting the update. Even insert and delete actions get replicated in a similar 
fashion. In the next example, a change is made to a row in “Trunk Map” table in 
Process B. The Orb layer will send a single replication message to the Hive 
service, targeted at all the instances of A and B processes. This results in 4 other 
copies of the table getting the update.

3.1.3 Standard features of Orb

• SQL query support: Programmers can use simple SQL where clauses to select 
the rows from the tables.

• Optional Triggers: The programmers can assign triggers on 
insert/update/delete/publish on any table. If the change is made to a table in 
process A, which gets replicated on the same table in process B, it can trigger 
a callback in process B. This is a very useful feature in event driven 
programming models. For example, a web based dashboard can update the 
screen only when a trigger is received.

• Primary key support: The tables can assign primary keys using single or 
multiple keys. Can also be used for indexed search.

• Indexing support: Programmers can define any number of indexes using one 
or more keys. Very useful while searching large tables. There are even 
diagnostic tools to tune the indexing performance.



IraHive HA Framework Application Notes 11

• Redundancy: If the hive contains multiple instances of the same process with 
a bunch of tables, they will have copies of identical data. If one of the 
instances crashes, the data is intact in other running instances. If the crashed 
instance comes up again, it will receive the full set of all the latest tables from 
the oldest instance of that process. This often lets the architects design 
applications that will never dip into disk based databases after initialization.

• Load Balancing: Since every instance of a process has identical data, the 
requests can be sent to any instance of a process using BY_ID_ONE or 
BY_ROLE_ONE category destination.

• High performance: Just like the Hive layer, the Orb uses every CPU core 
available via multi-threading to maximize performance.

• Virtual tables: The programs can publish into virtual tables, which are not 
stored, but only replicated to subscribers of those virtual tables. It works 
similar to multi-casting. The subscribers get the published data, as long as 
the process has a trigger on publish event for that virtual table.

• Portability: Supports Windows & Linux on physical servers, cloud servers, 
docker containers and even tiny devices like raspberry pi. Either Redis or 
multi-cast support is required for service discovery.

4. Language Support and Licensing

Hive natively supports python, C# and C++. Licenses are counted by the number 
of CPU cores in each server running the Hive service. Both node-locked and cloud 
licensing is supported. However, node-locked is only recommended for physical 
servers and VMs where the instance doesn’t change after every restart. 
Environments using DHCP or autoscaling or containers must stick with cloud 
licensing.

Unit # 2201A, 22nd Floor, World Trade Centre, Rajajinagar | Bangalore
Karnataka 560055 | Phone: +918067935393 

Email: enquire@epicode.in

mailto:enquire@epicode.in
mailto:enquire@epicode.in
mailto:enquire@epicode.in
mailto:enquire@epicode.in
mailto:enquire@epicode.in
mailto:enquire@epicode.in
mailto:enquire@epicode.in
mailto:enquire@epicode.in
mailto:enquire@epicode.in
mailto:enquire@epicode.in
mailto:enquire@epicode.in
mailto:enquire@epicode.in
mailto:enquire@epicode.in
mailto:enquire@epicode.in
mailto:enquire@epicode.in
mailto:enquire@epicode.in
mailto:enquire@epicode.in
mailto:enquire@epicode.in
mailto:enquire@epicode.in

